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ABSTRACT

The rate of evaporation of a pure liquid at tempe-

rature T into a vacuum is shown to be equal to a - c • n

where a is a coefficient depending on equilibrium molecular

properties, c is one-fourth the gas-kinetic mean velocity of

the molecules at temperature T and ns is the number density

of the vapor molecules in equilibrium with the liquid at T.

This result is not new. Its derivation and under-

lying assumptions are of considerable theoretical interest.

Previous derivations which have led to similar or slightly

different results are discussed.
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Introduction

In 1832, from gas kinetic theory, Hertz (1) arrived

at the conclusion that there must exist a maximum rate of evapo-

ration re from a liquid surface at a temperature T into a

vacuum. According to Hertz:

re n s (1)

where c is one-fourth the gas-kinetic mean molecular speed at

temperature T and ns is the number density of molecules of

vapor in equilibrium with the liquid at T.

This result of Hertz is of special interest in that it

showed for the first time how a rate process could be calculated

from gas kinetic theory supplemented by a fundamental assumption

of equilibrium.

Indeed, the reasoning behind equation (1) is as follows.

Consider a liquid in equilibrium with its vapor. From gas-kinetic

theory, the frequency of collisions of vapor molecules with the

surface is given by c • n6. If every collision leads to con-

densation, C . ns represents also the rate of condensation and

it is the maximum rate of condensation. Since equilibrium pre-

vails, c , ns is also the maximum rate of evaporation. If now

all molecules in the vapor phase are removed so that the liquid

is allowed to evaporate freely into a vacuum, it is assumed that

the maximum rate of evaporation is still given by the equilibrium

value c . ns.



If, on the other hand, as first noted by Knudsen (2),

only a fraction a of the molecules striking the surface at

equilibrium actually condenses, the maximum rate of condensation

and evaporation at equilibrium is a - c -n5  Again, if it is

assumed that the same rate obtains away from equilibrium, the

maximum rate of evaporation into a vacuum becomes:

r e =a.. c a n s (2)

where a is the so-called evaporation or condensation coefficient.

It is clear that a, must have the same value for condensation

and evaporation since i'Lt was first introduced to describe an

equilibrium process. Then by virtue of microscopic reversibility,

a must be the same in both directions. On the other hand, if

evaporation ceased to be an equilibrium process away from equili-

brium, the value of a might very well change and be different

for condensation or evaporation.

The expression of Hertz as modified by Knudsen was

first verified by the latter in a study of the evaporation of

mercury. Knudsen (2) found a - 1 for mercury. This result was

confirmed by Volmer and Estermann (3) who found a - 1.00 + 0.07

for mercury in an ex~tended temperature range where the rate of

evaporation varied by a factor of more than 10S

Thus, the theoretical result of Hertz rests on solid

experimental grounds. There still exists no other case where a
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rate process has been calculated and the calculated value sub-

mitted to such a close experimental verification. In particular,

the fundamental assumption of equilibrium must be considered as

proved by the careful data of Volmer and Estermann.

In the case of molecules with internal degrees of free-

dom, gas-kinetic theory may be inadequate and it is of interest

to apply absolute rate theory to the problem of evaporation. The

importance of rotational motion in this problem was first pointed

out by Herzfeld (4). In what follows, thc, rate of evaporation

will be derived from the usual form of absolute rate theory. This

derivation will then be compared to other derivations in the

literature.

Rate of Evaporation at Equilibrium

The simplest approach is to repeat the reasoning of

Hertz. If, at first, the molecule considered has no internal

degrees of freedom, the result of Hertz must of course be repro-

duced.

In a system containing liquid and vapor in equilibrium,

the rate of condensation rc will be given by the usual formula

of absolute rate theory:

F- -• 0
r F+ n. e RT (3)
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Notations are as follows:

v : Eyring's frequency : kT/h

F : the partition function of the transition state per unit

interfacial area

F : the partition function of the gas molecules per unit

volume
*
O : the activation energy at absolute zero.

The transmission coefficient has been assumed to be

equal to unity. If there is no activation barrier, (3) reduces

to: *
r v F n (4)

The assumption will now be made that the transition

state still possesses translational mobility in two dimensions,

parallel to the surface. Since the molecules have no internal

degrees of freedom, both F and F have translational contri-

butions only, respectively in two and three dimensions. Therefore:

F = (v/c) 2  (5)

Fg = (v/c) 2  (6)

Substitution of (5) and (6) into (4) gives:

rc - C ns

But since the liquid is in equilibrium with the vapor,

rc a re. If, as in the classical theory, it is now assumed that

this is also the rate of evaporation when all molecules in the

vapor are removed:



r - co n

an expression identical to (1) as expected. The case of interest

is that where the molecules have internal motion characterized

in the gas and in the transition state by the internal partition

functions f and f$ respectively.

Then:

F4 - (v/c) 2 •f (7)

F - (v/c) 3 f (8)

Hence, the rate of evaporation becomes:

re M (fs (9)

A final assumption is to take for the internal partition

function of the transition state the value of the internal parti-

tion function of the liquid, fL"

The result is now:

re - c . ns (10)

It is tempting to identify fL/f 8  with the evaporation

coefficient a :
fLa- (11)

Calculation of a is then feasible in principle from

equilibrium properties of the liquid and its vapor.
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Rate of-Evaporation in t o a Vacuum

The same result should be obtained without recourse to

the circuitous route imagined by Hertz. But then it is necessary

to use a particular model of the liquid although the details of

this model must disappear in the final expression for the rate of

evaporation.

Following essentially the reasoning of Penner (5), the

calculation of the rate will be done on the basis of the free

volume theory of Kinkaid and Eyring (6).

First, the relation between free volume, saturation

pressure and heat of vaporization will be recalled. Then this

result will be applied to the calculation of the rate of evapo-

ration.

The complete partition function QL for one mole (N

molecules) of the liquid is:

L i.. {(v/c)3 Vf exp (E/RT) • f L (12)

where Vf is the free volume of the liquid, per mole and E is

the molar internal energy of vaporization at absolute zero.

On the other hand, the complete partition function for

one mole of ideal vapor occupying a volume V is:

Q . I{(v/c) 3 V fg (13)

The Helmoltz free energy F per mole is related to the

complete partition function Q
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F -k TInQ (14)

The molar Gibbs free energy or chemical potential 1 of liquid

and vapor are then given by the expressions:

S- k n QL + p VL -- k T n QL (15)

P9 - -k T An Q + p V - -k T An Qg + RT (16)

since the term p VL for a condensed phase can be neglected.

At equilibrium between liquid and vapor W. 1"g" or

Vf •L f exp(E/RT) -- (17)V . fg

Therefore, putting as before (fL/fg) - a :

V a el . eE/RT (18)

Introducing volumes per molecule v - V/N and vf -

Vf/N and noting that v m (I/n.), we have finally:

v1e- E/RT (19)

To calculate the rate of evaporation, the following

usual assumptions are now made: the transition state is in equi-

librium with reactants and the transmission coefficient is unity.

Then:
*

r v - n (20)

where n* is the number of activated complexes per unit Inter-

facial area. The activated complex is assumed, as previously, to



be free to t~ranslate in two dimensions parallel to the surface.,

In the calculation of n*, the translation along the reaction

coordinate must be omitted. Finally, the internal partition

function of the activated complex is assumed to be identical to

that in the liquid.

Then the complete partition function for the tran-

sition state is:

* 2 . , N 2l

Q m(v/c)' - f~ L a). (21)

where a is the area available to each activated complex and

therefore a - 1/n4'. The equilibrium condition:

PL=

where ik is the chemical potential of activated complexes gives

now:
(v/c) Vf. exp (E/RT)

n -0 (22)An (N!)'I/ V a

Hence:
Vf -1 -E/RT(V/c) ve u e e (23)

since by Stirling's approximation:

N- (N/e)N (24)

Thus:

* 1 e-/RT (25)
n Vf -(v/c)a e e



Finally:
Se v o * - . E/RT (26)

The free volume per molecule in the liquid can now be

eliminated by substitution of its value derived above (19):

= -E/RT o eIn (27)
e ' -E/RTe

As expected, the result is identical to that obtained

previously (10) :

re -• a c & ns (28)

Discussion

In the final result, equation (28), any reference to

the particular model of the liquid has disappeared and the ex-

pression for the rate of evaporation is the same as equation (10)

which was derived following the method of Hertz without any assump-

tion as to the nature of the liquid state.

If a different assumption is made concerning the modes

of motion of the liquid, the final result, equation (28) will not

be affected because its derivation rests on the two equilibrium

relations:

between which the value of the free volume is eliminated.
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For example, in the treatment just given,, it has been

assumed implicitly that the liquid possessed its full communal

entropy. Indeed, the partition function for the liquid given by

equation (12) gives to each molecule the possibility of roaming

through the total free volume Vf.

If it is now assumed, for instance, that each molecule

is restricted to motion within its own cell, the communal entropy

vanishes and (12) becomes:

3N

Q (v/c) 3vj exp (E/RT) * f1L (121)
LJ

Then the condition for equilibrium between liquid and

vapor gives for the free volume per molecule a value e times

larger than previously:

I -E/RT (19')a.ns

But, correspondingly, the condition for equilibrium

between liquid and transition state will lead to a value for n

which is also e times larger than previously:

$ 1 -E/RTn w (25')
vf (v/c).

so that the final result (28) is the same as before. However,

Penner in his original derivation (5) used essentially equation

(25') together with equation (19): this led him to a value for re:

re - e .a a c . n
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which is of course e times too high. He then speculated that

this value should be reduced by a transmission coefficient smaller

than unity, expressing the possible failure of the equilibrium

hypothesis. The situation has been clarified (7) and it is now

clear that the correct expression (28) can be obtained without

recourse to any ad hoc assumption concerning the fundamental

equilibrium hypothesis or the transmission coefficient.

More recently, Mortensen and Eyring have derived once

more equation (28): their method is somewhat confusing in our

opinion because they identify a - fL/fG with the transmission

coefficient in the customary rate equation. This, of course, is

not necessary at all. In particular, as shown above, evaporation

can be treated like a perfectly normal rate process with a trans-

mission coefficient equal to unity and the usual equilibrium be-

tween activated state and reactants.

Since a can be evaluated in several ways, as shown

by Mortensen and Eyring (8), it becomes highly interesting, from

the standpoint of theoretical chemical kinetics, to accumulate

reliable experimental data on the rate of evaporation of liquids.

This has been undertaken in our Laboratory and results

obtained with glycerol have been discussed elsewhere (9). Further

work is now in progress, using other associated liquids for which

values of a smaller than unity are expected theoretically. The

possibility, in such studies, of throwing more light on the nature

of the transition state, appears quite attractive.
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